

 ISSN No. (Print): 0975-1718

 ISSN No. (Online): 2249-3247

A Heuristic Tasks Allocation Algorithm
 Kamini Raikwar1, Virendra Upadhyay1 and Manoj Kumar Shukla3

1
Research Scholar

Department of Mathematics M.G.C.G.V. Chitrakoot (Madhya Pradesh), India

2
Department of Mathematics M.G.C.G.V. Chitrakoot (Madhya Pradesh), India

3
Department of Mathematics,

Institute for Excellence in Higher Education, Bhopal (Madhya Pradesh), India

 (Corresponding author: Kamini Raikwar)

(Received 09 February 2018, Accepted 20 April, 2018)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The technique reported in this paper provides either similar or batter optimum results optimal

solution for assigning a set of m tasks of a program to a set of n processors where m>n in all the cases. The

model has been coded in C++ and implemented on HP-workstation dual core processor machine and found

satisfactory results.

I. INTRODUCTION

Allocation of modules or tasks of an application

program to processors is an important design issue in
the Distributed Computing Environment (DCE). If this

allocation is not carried out properly, the available

computational power cannot be exploited efficiently

and consequently the throughput of the system

decreases. This degradation in throughput Lint [11] and

Govi [8] is due to excessive ITCC that arises from the

interdependent tasks comprising an application residing

on different processors. Thus to make an efficient use

of resources, the ITCC need to be minimized and tasks

should be assigned to the processor on which they run

fast. Hence task allocation is to be carried out with the
goal of minimizing the total sum of EC and ITCC

incurred by the assignment.

In order to minimize the Total Computation Cost (TCC)

of assignment it is required to exploit the specific

capabilities of the processors and avoid excessive

ITCC. The collaboration of EC and ITCC of any policy

has been taken in to in consideration in different ways

in the literature Aror81, Bokh [5], Bokh [6], Chu[7],

Hous[9], Inde [10], Pric [18], Lo[12], Lo [14], Ston

[21] and [22], Tows [23] and Lusa [15]. These

techniques can be broadly classified into three
categories: graph theoretic approach, mathematical

programming approach and heuristic approach. Among

them, the graph theoretic approach, alone or in

combination with heuristics, have been widely applied

to the task allocation problem. Ston [21-22], using

network flow graphs derived an efficient task allocation

algorithm for a two-processor system to obtain the

optimal assignment. Extending Stone’s results Lo [12],

[13], [14], Arora & Rana [2] derived a solution for

multiple processors using heuristics in combination

with network flow model. Bokhari [5] and Arora &
Rana [1] presented optimal solutions for program

graphs constrained to tree like structure. For series-

parallel program graphs, Towsley [23] presented a

shortest path algorithm for optimal task allocation.

Price and Pooch [18] have developed an efficient

heuristic policy for a general form of program graph.

The problem of assigning tasks of a random program

graph to any number of processors with objective of

minimizing total time using either graph theoretic

approach or mathematical programming approach is

complex. The graph theoretical approach is intractable
for random program graphs and computing system

having more than two processors. Therefore simpler,

but sub-optimal solutions can be obtained by employing

heuristics. One such heuristic search technique is

presented in this chapter. The model considered the

Impact of Collaborating EC and ITCC before deciding

the fusion strategy. After the initial assignment process

is over the impact of the sum of EC & ITCC of a

candidate task on each of the processor and finally

fuses the task, where the sum of its EC and ITCC is

minimum.
The technique reported in this paper provides either

similar or batter optimum results optimal solution for

assigning a set of m tasks of a program to a set of n

processors where � > � in all the cases. The model has

been coded in C++ and implemented on HP-

workstation dual core processor machine and found

satisfactory results.

International Journal of Theoretical & Applied Sciences, 10(1): 263-268(2018)

 Raikwar, Upadhyay and Shukla 264

II. PROBLEM STATEMENT

Consider the problem of finding optimal assignment of set of m tasks � = ���, �
, �� … ��� of � tasks to be

allocated set of � processors � = ���, �
, ��, . ���. These processors are interconnected by communication link.

These links provide means for transferring massages among the processors. Problem involves developing a

generalized theory by using liner programming method. This technique can generate an optimal solution which (�)

large number of computation task to be allocated (��) balance utilization of processors in the DCS, and (���)
Minimize the overall computation cost.

III. THE PROPOSED METHOD

Initially the average load on the processors �� is obtained by using equation (3.1) and (3.2) respectively and the total

load may be calculated by using the equation (3.3)

(3.1) �������� = ��
�

(3.2) �� = ∑ !"#��� where $ = 1,2, … … �,
The average load on a processor �������� depends upon the different tasks on each

processor in '() (,). The total processor load is given by

(3.3) �*+, = ∑ ����������

The load on each processor is equal to the average load within a reasonable tolerance. In the present study a

tolerance factor of 20% of average load has been considered.

To determine the allocation, initially determine “�” Minimally Linked Task ()��) by using equation (3.4) and store

the result in two dimensional array)��(,) the first column represents the task number and second column

represents the sum of ITCC of task ti with all task tk-i. Rearrange the)�� (,) in ascending order assuming the

second column as sorted key.

(3.4))��(�, /) = ∑ ""#0�#,01�

Also, arrange the '() (,) accordingly. To determine initial allocation apply the Yadav et al [24]

algorithm] and store in an array ��22($) (where $ = 1,2, … , �). The processor position are also store in a another

linear array Aalloc ($). The value of �3456 ($) is also computed by adding the values of Aalloc ($) if a task �# is
assigned to processor �� otherwise continue. The remaining (� − �) task are then store in a liner array ��+�_�22().

Tasks assigned to processors pj and stored in ��+�_�22(). which are obviously

 � = ��22()∪ ��+�_�22()

All the tasks stored in ��+�_�22() fused with those assigned tasks stored in ��22() on the bases of minimum average of

EC and ITCC.

The Fused Execution Cost (FEC) of a task �� ∈ ��+�_�22() with some other task �# ∈ ��22() on processor �� is

obtained as:

(3.5) ;'(($)�# = <!"�� + !"#�> 1 ≤ @ ≤ �, 1 ≤ � ≤ �, 1 ≤ $ ≤ � and @ ≠ �

 Let ""�# be the ITCC between ��∈��+�_�22() and �# ∈ ��22(). Fused Inter Task Communication Cost (;B�(() for

��with �# is computed as:

(3.6) ;B�((($)�# = ∑ C""�#D# EF∈3GHH()I

Here, "�# = 0 if fused with �# or @ = � and remaining "�# value are added Minimum Average Fused Cost ()K;()

is calculated as follows:

(3.7))K;(($)�# = ��� L(;'(�� + ;B�((��) + (;'(�
 + ;B�((�
) + (;'(�� + ;B�((��),
… … … , (;'(�� + ;B�((��) M

This process will be continued until all the tasks stored in ��+�_�22() are fused. After

complete allocation is achieved �'(($) and B�((($) @N:
(3.8) �'(($) = ∑ !#�P#� = 1,2, … … ���1�

Where P#� = L1, �Q �@N/ � �N @NN�R� �S �TS"!NNST �
0, S�ℎ!TV�N! M

(3.9) B�((($) = ∑ !#�P#� � = 1,2, … … ���1�

Where P#� = L1, �Q �@N/ � �N @NN�R� �S �TS"!NNST �
0, S�ℎ!TV�N! M

 Raikwar, Upadhyay and Shukla 265

Finally, Calculate the Total Optimal Cost (�W() by summing up the values of �'(($) and B�((($), and store the

result in a linear array Over �W(($) where $ = 1,2, … �. The maximum value of �W(($) will be the optimal

cost of the system:

(3.10) �W(($) =)@P ��'(($) + B�((($)�

The Mean Service Rate C)XYD of the processors in terms of ��22(j). to be computed as and store the results in

)XY($) (where $ = 1,2, … , �).

(3.11))XY($) = �
3Z[(�) $ = 1,2, … … �

The overall throughout of the processors are calculated as and store the results of

throughout in the linear arrays �Y� ($), where $ = 1, 2 … … . , �
(3.12) �\]($) = 3^_`a(�)

3Z[(�)

Algorithm
To give an algorithmic representation to the technique described in the section 3. Let us

Consider the DCS in which a set of m tasks � = ���. �
, �� … ��� of � tasks to be allocated set of n processors

� = ���, �
, ��, … ���.
Step-1. Input �, �, '() (,) and B�(() (,)
Step-2. Initially the average load on the processors pj is obtained

Step-3. Determine the “�” Minimally Linked Task

Step-4. Augmented '() (,) by introducing the)�) () and sort '() (,) in increasing order

considering)�� as sorting key.

Step-5. Determine the initial allocations, on applying Yadav et al [24] algorithm. The initial allocation than store in

an linear array Ta s s () and the processor position are store in K�**+b($) the valve of �3456($) is also computed by

adding the value of K�**+b($). The remaining � − � task are stored in ��+�_�22().

Step-6. Select a task ��∈��+�_�22() for fusion with some other task �c∈��22() on processor �� and determine the ;'(

by using the equation (3.5), (3.6) and (3.7). This step will be continued until all the tasks stored in ��+�_�22() are

fused and apply Yadav et al [24] algorithm for assignment.

Step-7. After complete allocation compute �'(($), B�((($) and �W(($) by using equation (3.8), (3.9) and (3.10)

respectively. Obtained the maximum value of �W(($) that will be the optimal cost of the system.

Step-8. Evaluate the)XY ($) and �Y� ($) using equation (3.11) & (3.12)

Step-9. Stop

IV. IMPLEMENTATION OF THE ALGORITHM

The application of the above method is illustrated here using an example.

Example 4.1: To justify the application and usefulness of the present algorithm an example of a DCS is considered

which is consisting of a set of “� = 4” processors � = ���, �
, ��, �e� connected by an arbitrary network and a set

of “� = 5” executable tasks � = ��� �
, ��, �e, �g� which may be portion of an executable code or a data file.

Input of the Algorithm: Data required by the Algorithm is given below:

Step-1. Number of processors available in the system (�) = 4

Number of tasks to be executed (�) = 5

1 2 3 4 1 2 3 4 5

1 8 4 6 5 1 0 100 3 5 6

2 6 5 4 2 2 100 0 6 4 3
(,) ,

3 8 4 5 7 3 3 6 0 5 2

4 4 7 6 5 4 5 4 5 0 6

5 8 8 2 6 5 6 3 2 6 0

p p p p t t t t t

t t

t t
EMC ITCCM

t t

t t

t t

= =

 Raikwar, Upadhyay and Shukla 266

Step-2. Actual average load to be assign to the processor after introducing the 20% Tolerance Factor (�;) the

average load may be assign to the processors is calculated and same may be sore in linear array �Khi()

 p1 10

�Khi() = p2 08

 p3 07
 p4 07

Step-3. Determine the Minimally Link Task ()��) and store the result in)�� (,) as follows:

 t1 114

)�)(,) = t2 113

 t3 016

 t4 020

 t5 017

Step-4. Augmented '() (,) by introducing the)�) () and sort '() (,) in increasing order considering)�� as

sorting key.

 p1 p2 p3 p4 MLT

 t1 8 4 6 5 114

'()(,) = t2 6 5 4 2 113

 t3 8 4 5 7 16

 t4 4 7 6 7 20

 t5 8 8 2 6 17

 p1 p2 p3 p4 MLT

 t3 8 4 5 7 16

'()(,) = t5 8 8 2 6 17
 t4 4 7 6 7 20

 t2 6 5 4 2 113

 t1 8 4 6 5 114

Step-5. Apply Yadav et al [24] algorithm to determine the initial allocation. The initial allocation than store in an

linear array ��22() and the processor position are store in K@jjS"(). The remaining m-n tasks are stored in

��+�_�22(). The results are as follows:

��22() = ��2 �4, �5, �3 �
K@ j j S "($) = ��4, �1, �3, �2�

��+�_�22() = ����
Step-6. After getting the initial allocation a task stored in ��+�_�22() has been selected for assignment i.e. �
 ;'(($),
for �
 with all the stored in ��22() is calculated as:

;'(($) in table 1

Table 1

Task Processors FEC(j)

t1+t2 P4 7

t1+t3 P1 16

t1+t4 P3 12

t1+t5 P2 12

Evaluate the ;B�((($) for �
 with the other assigned tasks stored in ��22() is calculated as:

Table 2.
Task Processors FITCC(j)

t1+t2 P4 27

t1+t3 P1 124

t1+t4 P3 124

t1+t5 P2 119

 Raikwar, Upadhyay and Shukla 267

Calculated the)K;(($) by summing up the value of ;'(($) and ;B�((($) as:

Table 3.
Task Processors FEC(j) FITCC(j) MAFC(j)

t1+t2 P4 7 27 34

t1+t3 P1 16 124 140

t1+t4 P3 12 124 136

t1+t5 P2 12 119 131

The)K;((1)12 is minimum i.e. 34. Therefore, task t1 is fused with Task �
 executing on processor �4.

Step-7 & 8. Compute �'(($), B�((($), �W(($),)XY ($) @�l �Y� ($) given in table 4

Table 4.

Processors PEC(j) ITCC(j) TOC(j) MSR (j) TRP(j)

P1 4 20 24 0.42 0.42

P2 4 16 20 0.50 0.50

P3 2 17 19 0.053 0.53

P4 7 27 34 0.029 0.58

The maximum of �W(($) is 34 i.e. the total busy cost of the system is 34 which is corresponds to processor �4 and

depicted in Fig. 1.

Fig. 1.

V. CONCLUSIONS

The present Chapter deals with the problem of optimal task allocation and load balancing in DCS. A heuristic tasks

allocation algorithm is suggested to obtain appropriate solution of the problem. The load balancing mechanism is

introduced in the algorithm by fusing the unallocated tasks of the basis of minimum of the average impact of EC and

ITCC. It is observed that the time complexity of the present method is better than the other method which are based

on the graph approach Ston [21], Bokh79, Bokh [4,5], Shen [20], Rao [19], Huan [9], Nico [17], Integer

programming and branch & bound technique Ma [16].

REFERENCE

[1]. Arora, R.K., and Rana, S.P., (1979). “On module assignment in two processors distributed Systems”, Information

Processing Letters, Vol. 9, No. 3, pp. 113-117.

Processor p1
Processor p2

Processor p3
Processor p4

4
4

2 7

20
16 17

27

24
20

19

34

Maximum busy time of the system

PEC(j) ITCC(J) TOC(j)

 Raikwar, Upadhyay and Shukla 268

[2]. Arora, R.K., and Rana, S.P., (1980). “Heuristic algorithms for process assignment in distributed computing systems”,
Information Processing Letters, Vol. 11, No. 45, pp. 199-203.
[3]. Arora, R.K., and Rana, S.P., (1981). “On the design of process assigner for distributed computing systems”, The Australian

Computer Journal, Vol. 13, No. 3, pp. 77-82.

[4]. Bokhari, S.H., (1979). “Dual processors scheduling with dynamic re-assignment”, IEEE Transactions on Software

Engineering, Vol. SE-5, pp. 341-349.
[5]. Bokhari, S.H., (1981). “A shortest tree algorithm for optimal assignment across space and time in distributed processor
system”, IEEE Transactions on Software Engineering, Vol. SE-7, No. 6, pp. 583-589.
[6]. Bokhari, S.H., (1988). “Partitioning problems in parallel, pipeline and distributed computing”, IEEE Transactions on

Computers, Vol. C-37, No. 1, pp. 48-57.
[7]. Chu, W.W., Holloway, L.J., M.T.L. Lan, and K. Efe, (1980). “Task allocation in distributed data processing”, Computers 13,
No.11, pp.57-69.

[8]. Govil, Kapil, and Kumar, Avanish (2011). “A Modified and Efficient Algorithm for Static Task Assignment in Distributed
Processing Environment” International Journal of Computer Applications, 2011, “IJCA Journal” No. 1, Art.1
[9]. Huang, X., and Cai, X.Y., (1987). “An efficient and flexible heuristic task assignment method for distributed computing
systems” 2nd International Conference on Computers and Applications, China, 682-688.
[10]. Inderkhya, B., Stone, H.S., and Cheng, L.X., (1986). “Optimal partitioning of randomly generated distributed programs”,
IEEE Transactions on Computers and Software Engineering, Vol. SE-12, No. 3, pp. 483-495.
[11]. Lint, B., and Agarwal, T., (1981). “Communication issues in the design and analysis of parallel algorithm”, IEEE

Transactions on Software Engineering, Vol. SE-7, No. 2, pp. 174-188.

[12]. Lo, V.M., (1983). “Task assignment in distributed systems”, Ph.D. Thesis, University of Illinois at Urbana-Champaign.
[13]. Lo, V.M., (1984). “Heuristic algorithms for task assignment in distributed systems”, Proceedings of the 4th International

Conference on Distributed Computing Systems, 3Q-39.
[14]. Lo, V.M., (1988). “Heuristic algorithms for task assignment in distributed systems”, IEEE Transactions on Computers,

Vol. 37, No. 11, pp. 1384-1397.
[15]. Lusa, A., and Potts., C. N., (2008). “A variable neighborhood search algorithm for the constrained task allocation problem”
Journal of the Operational Research Society. 59, 812-822.
[16]. Ma, P.Y.R., Lu, E.Y.S., and Tsuchiya, J., (1982). “A task allocation model for distributed computing systems”, IEEE

Transactions on Computers”, Vol. 31, No. 1, pp. 41-47.

[17]. Nicol, D.M. (1989).”Optimal Partitioning of Random Programs across two processor” IEEE Trans. On Softwear

Engineering, Vol. 5, No. 2.
[18]. Price C.C., and Pooch, U.W, (1982). “Search techniques for non-linear multiprocessor scheduling problem”, Naval

Research Logistics Quarterly, Vol. 29, No. 2, pp. 13-233.
[19]. Rao, G.S., Stone, H.S, Hu, T.C., (1979). “Assignment of Task in Distributed processor System with limited Memory”
IEEE Trans. on Computer, Vol. C- 28, No. 4, PP-291-299.
[20]. Shen., C.C., and Tsai, W.H., (1985). “A graph matching approach to optimal task assignment in distributing computing
system using a minimax criterion”, IEEE Transactions on Computers, Vol. 34, No. 3, pp. 197-203.

[21]. Stone, H. S., (1977). “Multiprocessor scheduling with the aid of network flow algorithms”, IEEE Transactions on

Software Engineering. SE-3, l, pp. 85-93.
[22]. Stone, H.S., and Bokhari, S.H., (1978). “Control of Distributed Processor”, computers, Vol. 11, pp. 97-106.
[23]. Towsley, D.F., (1986). “Allocating Programs Containing Branches and Loops within a Multiple Processor System”, IEEE

Transactions on Software Engineering, SE-12 (10), pp.1018-1024.
[24]. Yadav, P. K., Kumar, Avanish and Singh, M.P, (2004). “An Algorithm for Solving the Unbalanced Assignment Problems,
International Journal of Mathematica Sciences, Vol. 12(2), pp. 447-461.

